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The effect of slight anisotropy on the behaviour of shock waves in a compress~le elastic medium is investigated. Partienlar attention 
is paid to the properties of shock waves which are not close to plane-polarized (the properties of plane-polarized shock waves 
only change slightly). Some results are obtained for an arbitrary form of anisotropy when the behaviour of shock waves is known 
in media which differ from those considered in having no anisotropy. The effect of slight anisotropy on the behaviour of shock 
waves in an incompre~;sible elastic medium has been considered previously in [1]. 

1. FORMULATION OF THE PROBLEM 

We shall consider the one-dimensional motions of an elastic medium under the assumption that the 
dependence of the internal energy • per unit of initial volume on the derivatives of the components 
of the displacement vector wi with respect to the Lagrangian coordinate x has the form [2] 

O(u i , S) = F(u 2 + u 2, u 3 , S) + gp(u i, S), dtb = OkdUk + pTdS 

~ k = b d P / ~ u k ,  u i = b w i / b X  i,k=1,2,3 (1.1) 

where wi are the ,components of the displacement vector in the Cartesian system of coordinates xl, 
x2, x3 = x, g is a parameter which characterizes the anisotropy of the properties of the system in the 
plane of a wave (llhe wave anisotropy parameter) which is henceforth assumed to be small, F and p 
are certain functions of their arguments, p is the initial density of the medium which corresponds to 
u3 = 0 and T is the temperature. The second equation is a consequence of the first and second laws of 
thermodynamics. 

Relations which express the laws of conservation of momentum and energy, as well as the condition 
of the continuity of the displacements wi in the shock wave which propagates at a velocity dx/dt = W, 
can be written in the form [3] 

pW[x)kl+[q~k] = 0, W[uk]+[ ' , ]= 0 

W[~ + pX) 2 / 2] + [uidP i ] = O, X) k = Ow k / 3t (1.2) 

Square brackets denote a jump in a quantity: [F] = F -  F-; quantities with a minus sign correspond to 
the state before the jump and those without a minus sign correspond to the state after the jump. It 
follows from (1.1) and (1.2) that 

, )  

[ F ~ ] - p W - [ u k ] = - g [ p k ] ,  [F] - (Fk+F~.  ) [ u k ] / 2 = - g [ p ] + g ( p k + p [ ) [ u ~ ] / 2  

F k = D E / ~ u  k, Pc =OP/~Ut  (1.3) 

We shall call the set of states u i of the medium across the shock wave which satisfy relations (1.2) 
for specified uT, s- the shock adiabatic curve (SAC). In the case of a general position, the SAC is a curve 
in the space ui, at each point of which W and S can be found. 
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2. SOME P R O P E R T I E S  OF S H O C K  WAVES W H E N  T H E R E  IS NO WAVE 
A N I S O T R O P Y  

Shock waves have been studied previously [3-8] in the case of wave isotropy (g = 0). Here, we shall 
recall some results which refer to this case. 

If g = 0, then it follows from the construction of the arguments of the function F that the SAC has 
the following form. Three branches of the SAC pass through the initial point A: two of them lie in a 
plane passing through the initial pointA and the axis u3 which we shall call the plane of the initial state 
while the third is a circle LA lying in the plane u3 = u3 with its centre at the point ul = 0, u2 = 0. Shock 
waves, states in which ui lies in the plane of the initial state, will be said to be plane-polarized. 

The circle LA describes a set of states across a "rotational shock wave" with an initial state A. Such 
a shock wave can also be considered [3-8] as the limiting case of its own form of a time-invariant Riemann 
wave. The entropy in it does not change and the velocity of propagation of the rotational shock wave 
is constant: W = const in LA and is identical to the characteristic velocity on both sides of the shock. 
Using this, it is not difficult to obtain W 2 = F~2 if u2 = 0 or W 2 = F22 if u2 = 0 (F22 = 02F/Ou2). 

In the case of plane polarized shock waves it is possible, by choosing, for example, a system of 
coordinates such that u~ = 0, u2 = 0 to obtain the equations for the "plane" part of the SAC which 
lies in the plane of the initial state. In this case, the second equation (1.3), which corresponds to the 
projection on the x2-axis is automatically satisfied and can be discarded. 

If the system moves from the initial pointA along one of the plane branches of the SAC, then a point 
B can be found on it at which the velocity of the discontinuity WAn is identical to the velocity of the 
rotational shock wave corresponding to the point B. Then a circle LB describing a set of states across 
the rotational shock wave from state B will also belong to the SAC. In this case, the shock wave AB 
corresponding to the jump from the point A and point B and the rotational shock wave when their 
velocities are identical can be considered as a single shock wave. Shock waves with final states ui lying 
in the circles La and LB are not plane polarized if ui ~: ui(B). 

The velocity of a jump from pointA to an arbitrary point of the circle LB is also identical to the velocity 
of the rotational shock wave from point A. 

Actually, it is also possible to reach the point of the circle LB being considered using a rotational 
shock wave from pointA and a plane polarized shock wave to the point under consideration in LB. The 
latter shock wave has a velocity equal to W,~. It can be obtained by satisfying the conservation laws 
that a rotational shock wave with an initial point A has the same velocity. Hence, the velocity of the 
shock wave from A to any point in the circle LB is identical to the velocity of the rotational waves in 
front of and behind this shock wave. 

Note that the entropy is constant over the whole of the circle LB and, moreover, jumps from point 
A to points of LB are physically permissible if SB - SA ~> 0. A branch of the plant part of the SAC also 
passes through the second point of intersection of the circle LB with the initial plane passing through 
A and the ua-axis since, otherwise, this point would be an isolated point which satisfies the equations 
for the plane part of the SAC which does not correspond to the case of a general position. 

3. T H E  E F F E C T  OF A N I S O T R O P Y  ON A S H O C K  A D I A B A T I C  CURVE 

In the case of a small value of g ,  0 the plane part of a SAC as well as the quantities Wand S undergo 
small changes of the order o fg  and, moreover, the ends of the segments with evolutionary behaviour 
(the Jouguet points) and segments where [S] I> 0 may also be displaced by an amount of the order 
ofg.  

We are particularly interested in the influence of a small value ofg  on those parts of the SAC which, 
when g = 0, pass into the circles LA or LB since the corresponding shock waves, when g = 0, are found 
on the edges of evolutionary behaviour (the velocity of the shock wave is identical to the velocity of 
the rotational waves on the two sides of the shock wave), and, moreover, the points of the circle LA 
satisfy the condition [S] = 0. All of the subsequent discussion will be concerned with the study of just 
such shock waves which, when g = 0, correspond to the points of the circles L,4 or LB. 

The small change associated with g can affect the evolutionary behaviours of the shock wave as well 
as on the sign of [S] in the case of the circle passing through point A. 

For small g, we linearize Eqs (1.3) with respect to g taking account of (1.1) without perturbing the 
initial state and assuming perturbations of the quantities 5ui, 5S, 5W 2 of the order ofg. We rotate the 
axes Ul and u2 around the u3-axis and thereby introduce the new variables u~, u~, u~ = u 3 in such a 
way that u~ ~ 0 (here, u~-~ 0 in the general case). Then, using the notation F s = OF/OS, Fis = O2F/Ou'iOS, 
Fii = ~2F/~ui3u, taking account of the equalities F12 = 0, F23 = 0, F2s = 0, Fs = pT, W 2 = F22 and 
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assuming, to be sl?ecific, that 8u~ = 0, we obtain 

( Fj, - W 2 )~u; + Fi38u ~ + FistS-  [u; ]SW 2 = -g[p; ], - [u 2 ]~iW 2 = -g[P2 ] 

FII38Ul +(F33 - W2 )~u; + F3s~)S-[u; ]~)W 2 = - g [ p ; ]  

([ Fl ] - FI k [u~ ])~iu; + ([ 6 ] - 6k [u~ ])Su; + (2pT - Fsk [u~ ]) ~S = 

=g{-2[p]+(p~ + p~-)[uk]}, p; =Op/c3u; 

(3.1) 

It is assumed that the coefficients and the right-hand sides in this system of equations are known 
from the zeroth approximation. System (3.1) enables us to write out the solution explicitly which expresses 
8ui, 8u~, 5S and ~i~V 2. The formula 

~W 2 = g[p2 ] / [u 2] (3.2) 

has a particularly simple form which follows from the second equality of (3.1). The quantities 8u~ and 
8u~ characterize tJae distortion of the circle in the space u~, u~, u~ which arises from the effect of the 
anisotropy. 

While not attempting to provide a full investigation of this distortion, we note that, ff the quantity 
[p~ ] does not tend to zero when [u~ ] ---> 0 (that is, when the shock wave approximates to a plane-polarized 
shock wave) then, according to the second equation of (3.1), the quantity 8W 2 tends to infinity, that is, 
it becomes greater than g in its order of magnitude. The latter is untrue in the neighbourhood of the 
initial pointA where the ratio [p[]/[u~] has a finite limit, but is the case of the general situation for other 
points of intersection of the circles with the plane part of the SAC. In all the remaining equations of 
(3.1), apart from the second, the right-hand sides can be neglected when 8W 2 ---> .0 and the effect of 
anisotropy only s]aows up through the quantity 8W 2 which is determined from (3.2). If such an 
approximation is adopted, then the first, third and fourth equations of (3.1) will give the change in the 
position of a point on the SAC which is the same as that when g = 0 on the plane part of the SAC with 
the same value of 5W 2. 

If the point B does not correspond to the extremum of W 2 when g = 0, then, when g # 0, the approach 
of a point, representing a state across the shock wave, on the spatial part of the SAC to the plane of 
the initial state is accompanied by a motion along the plane part of the SAC (corresponding tog = 0), the 
direction of which is determined by the sign of 8W ~ and is different when this plane is approached from 
different sides if ~,~] # 0. Hence, the intersections of the circle and the plane part of the SAC existing 
when g = 0 which occur at the point B and at points which are symmetric to the points A and B about 
the u3-axis, are disconnected when g ~ 0 and, for small g, in the neighbourhood of these points of the 
SAC resembles a hyperbola with branches whose geometry is determined by the sign of [p~] and the 
direction of the change in W 2 along the plane part of the SAC wheng = 0. 

We recall that equalities (3.1) and (3.2) are written in the system of coordinates u~, u~, u~ in which 
u2 = 0. In another system of coordinates, which differs from that used above by a rotation about the 
ua-axis, the compoJaents of the vectors with subscripts 1 and 2 undergo an orthogonal transformation. 

If the condition ~ = 0 is adopted for such a system of coordinates as Ul, u2, u3, then equality (3.2) 
takes the form 

[pl]cosl)+[p2]sin O 
8W2 =g  RsinO 

e 2 _- (u / )2 + (u 2 )2, 0 = arctg(u 2 / u I ) (3.3) 

4. THE E F F E C T  OF A N I S O T R O P Y  ON THE E N T R O P Y  CHANGE IN A 
SHOCK WAVE 

If we multiply the first equation of (3.1) by [u~ ]/2 and the third equation by [u; ]/2 and add them to 
the fourth equation, we obtain 

7BS = g{-[p] + p',-[ul] + p3-[u3 ]} + 8W 2 ([u I ]2 + [u3 ]2 / 2 (4.1) 

For the part of the SAC which, when g = 0, transforms into a circle which does not pass through the 
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initial pointA, the quantity 8S, calculated using this equality, only gives a small correction to the entropy 
change [S] in the shock wave and therefore cannot affect the sign of this change. 

In the case of a shock wave which, wheng = 0, corresponds to a rotational wave from the pointA([u~] 
= [Us] = 0) with a rotation of the vector ua, u2 through an angle ~ in an anticlockwise direction around 
the us-axis, we obtain 

pT~S = g { - [ p ]  + (p~- cos 0 + p~ sin 0) (1  - cos  6 ) R }  + 8W2R 2 (1 - cos  6 )  2 / 2 (4.2) 

This equality is written in the same system of coordinates associated with the initial state as equality 
(3.3). The inequality 8S I> 0 separates out the physically admissible shock waves. For a specified function 
p(ul ,  S) which has to be taken in (4.2) in the neighbourhood of La, that is, when S = S-, this inequality 
can be easily investigated and the segments of the' SAC with 8S I> 0 can be found. 

In order to obtain additional evidence concerning the values of the entropy at points of the SAC a 
general relation, which is not associated with the smallness of g, is also useful 

T dS 3 
= ~[ui ]2 (4.3) 

W dW i=I 

(the derivative is taken on the SAC with respect to the velocity of the shock wave 140. In order to derive 
this relation, equalities (1.2) are differentiated with respect to Wwhile taking account of the fact that 
u7 are constant. One then adds the last of the resulting equalities to the first three multiplied by -~i, 
and the following three multiplied by --~i. A relation, similar to (4.3), has been obtained previously in 
[6]. In the case of small g for parts of the SAC which, as g ~ 0, pass into the circle, the factor T/W can 
be assumed to be constant. 

5. THE E F F E C T  OF A N I S O T R O P Y  ON THE E V O L U T I O N  OF 
S H O C K  WAVES 

In formulating the conditions for the evolutionary behaviour of a shock wave when g ;~ 0 we shall 
assume that, in the initial and final states, the characteristic velocities differ from one another by m o u n t s  
which do not vanish wheng = 0. The relations in the shock wave are given by equations (1.2) or (1.3). 
Then, in the case of smallg, the conditions for evolutionary behaviour for the part of the SAC close to 
a circle can be formulated as conditions which are imposed on the sign of the quantity 8W 2 - &:~ with 
respect to the two sides of the shock wave and, by co, we mean the characteristic velocity of a wave 
which becomes rotational when g = 0. We shall assume that, in front of and behind the shock wave, 
the characteristic velocities are numbered in the ascending order of their magnitudes so that co may 
denote cl, c2 and c3 depending on the relations between the characteristic velocities. The conditions 
for evolutionary behaviour are then written in the form 

(Sw 2 - 8c 2)- >~ O, (SW 2 - 8co 2 )* <~ 0 

( S w :  - 8c, )-(8w 2 - 8co2) + o 

( S w :  - 8co 2 )- o, (SW 2 - 8% 2 )+ o 

(5.1)  

(5.2)  

(5 .3)  

The system of two equations (5.1) gives the conditions for evolutionary behaviour if c o has the same 
number on different sides of the shock wave. Inequality (5.2) refers to the case when the number behind 
the shock wave is one less than the number in front of the shock wave and, finally, system (5.3) refers 
to the case when c~ = c~, c~ = c~i. If the number co  behind the shock wave is greater than the 
corresponding number in front of it, the shock wave being considered is non-evolutionary. 

2 By considering an infinitely small quasirotational shock wave at the pointA, we obtain (&:)- = (dp~du2)A. 
Here, the minus superscript indicates that the derivative is taken at the initial point along the 
corresponding branch of the SAC. This expression as well as the equalities (3.2) or (3.3) enable us to 

,2 2 determine the sign of the quantity (SW - 8%)- at each point of the part of the SAC being considered. 
In order to complete the treatment of inequalities (5.1)-(5.3), we note that the quantity (SW- 8co) + 

vanishes and changes sign on the SAC at points at which W reaches an extremum [6] (Jougnet points). 
On the quasirotational part, where W = 8W + const, the sign of (SW-  8%) + is determined by the sign 
of the derivative of 8W, taken along the SAC which corresponds to g = 0, close to the point B. To 
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determine the sign of (~iW- ~c~)) +, we use the following consideration which is based on equality (4.3). 
Close to the velocity maxima and minima, there are close pairs of points which correspond to the same 
value of W (which is close to the extremal value). These points may represent the initial and final states 
for a shock wave of small amplitude which corresponds to a velocity IV. Moreover, of these two points, 
the initial state corresponds to the smaller value of the entropy S and the final state to the larger value 
of S. In the initial state 5 W -  8co > 0 and, in the final state, 8 W -  5co < 0 [9]. By making use of the 
form of the right-hand side in (4.3), we can conclude that the sign of~W- ~c~) changes on passing through 
the minimum of 14z (which coincides with the minimum in S) from minus to plus if one moves along 
the SAC in the direction of increasing [Ul]: + [u2]: + [u3]:. In the neighbourhood of the maximum of 
W (or S), there is ~tn opposite change in the sign of the difference 6W- fic~. 

Hence, the signs of the quantities occurring in relations (5.1)-(5.3) can be readily determined, which 
enables one to make a judgement concerning the evolutionary behaviour of the shock waves being 
studied. Apart from the conditions for evolutionary behaviour, in the case of real systems it is necessary 
simultaneously to satisfy the conditions that there is no decrease in the entropy. Equality (4.1) or (4.2) 
serves to check thi,,; point. 
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